Polymetallic nodule exploration in the BGR contract area
Begin of project: July 19, 2006
End of project: July 18, 2026
Status of project: January 1, 2025
Exploration aims and conditions
Critical raw materials form the backbone of modern economies, particularly in industrialised regions like Germany and the European Union (EU). Metals such as manganese, nickel, copper, cobalt, and zinc are essential for a wide range of applications, from battery technology and renewable energy systems to electronics and transportation infrastructure. The energy transition, especially the shift towards electric vehicles and renewable energy sources, has intensified the demand for these critical metals. For example, cobalt and nickel are crucial components in lithium-ion batteries, while copper is indispensable for electrical wiring and renewable energy grids.
Germany, as one of the leading industrial nations, is highly dependent on these raw materials to maintain its technological and economic competitiveness. The EU has recognised this dependence, listing these metals as key to strategic sectors such as energy, defence, and digital infrastructure in its 2023 Critical Raw Materials Act. However, the supply of these materials is vulnerable to geopolitical tensions, market volatility, and environmental concerns.
These supply risks are exacerbated by the increasing global demand driven by population growth, urbanisation, and the industrialisation of emerging economies. According to the International Energy Agency (IEA), demand for critical minerals used in clean energy technologies could increase by as much as six times by 2040. At the same time, the global transition to a low-carbon economy necessitates a sustainable and secure supply of these raw materials, putting immense pressure on current supply chains.
BGR’s contract for the exploration of polymetallic nodules in a designated contract area in the north-eastern Pacific Ocean with the International Seabed authority (ISA) supports Germany’s long-term strategic goals for securing critical mineral resources, advancing scientific understanding of deep-sea ecosystems, and contributing to the development of sustainable mining practices.
The contract area has a size of 75.000 square kilometres, and is divided into two regions: a 15.000-square-kilometer area in the central part of the Clarion-Clipperton Zone (CCZ), and a 60.000-square-kilometer area in its eastern part. The seafloor of the CCZ, located between Hawaii and Mexico at water depths varying between 4.000 and 6.000 meters, is densely covered with polymetallic nodules, typically with a nodule size of 3 to 8 centimetres and containing approximately 30% manganese, alongside lower concentrations of copper, nickel, and cobalt (approximately 3% combined). Other trace metals occurring in economically significant concentrations include titanium, molybdenum, lithium, and neodymium. The polymetallic nodule resource in BGR’s contract area is estimated to contain around 900 million tons of nodules (wet weight, equivalent to approximately 600 million tons of dry weight).
Under the terms of the contract with the ISA, each contractor is required to collect environmental baseline data as an essential part of its exploration activities. Furthermore, monitoring during and after the testing of mining components is essential to ensure that no serious harm is caused to the marine environment. The data obtained both from baseline studies and from small-scale disturbance experiments or tests are necessary to assess and evaluate the potential impacts of future mining activities on deep-sea habitats. A critical component of these environmental baseline studies is to gather information on species diversities, compositions, densities, ranges and connectivity, both of the benthic fauna and of the zooplankton in the water column. Additional analyses include extensive studies of seabed topography, physical and chemical oceanographic conditions, sediment properties, biogeochemical processes, particle fluxes in the water column, amongst others.
To assess the potential impacts of polymetallic nodule mining on faunal communities of the deep sea and its overlying waters, impacted areas (Impact Reference Zones) must be defined and compared with undisturbed areas, known as Preservation Reference Zones, that should be similar in terms of habitat characteristics (species composition, population density), nodule density, and sediment properties. Baseline data are an essential requirement for the definition of such zones.
Testing of mining components or the use of sediment disturbance systems that create artificial disturbances and plumes on the seafloor requires prior environmental impact assessment (EIA) according to the regulations issued by the ISA. These measures aim to ensure the most environmentally responsible future use of deep-sea resources while safeguarding the deep-sea environment to the greatest extent possible.
Stakeholder consultation on BGR‘s „Environmental Impact Statement“ for small-scale testing of an AI-controlled nodule harvester in the eastern BGR contract area for the exploration of polymetallic nodules (Clarion-Clipperton Zone)
An in situ test of an advanced, image-controlled, autonomous, robotic underwater nodule harvester “Eureka III” that is currently being developed by the US American start-up company Impossible Metals (IM) will occur in the eastern part of the BGR contract area for the exploration of polymetallic nodules in the Clarion-Clipperton Zone (CCZ) of the NE Pacific in January/February 2026. The test area will have a size of maximally 250 x 45 m (11,250 m2), and testing will occur throughout 4 days.
The primary goal of this project is to demonstrate the technical feasibility of selectively harvesting polymetallic nodules using the specially adapted autonomous underwater vehicle (AUV) “Eureka III” and to assess its environmental impacts. Whereas IM is responsible for the development and testing of the Eureka III harvester (https://impossiblemetals.com), BGR is responsible for the planning, organisation and execution of the environmental monitoring and assessment programme (baseline and impact) in the framework of its exploration activities and obligations.
Testing of mining components is conducted in compliance with the German Seabed Mining Act (MBergG) and the regulations of the International Seabed Authority (ISA).
Public Consultation Details:
This consultation aims to provide a platform for all interested stakeholders to review and comment on the technical and scientific content of the EIS and its associated monitoring plan.
- Consultation Period: Opens 20 January 2025 and closes 2 March 2025.
Access the EIS:
Download: Environmental Impact Statement (PDF, 54 MB)
Submission of Comments:
Stakeholder comments must be submitted via email to marine-rohstoffe@bgr.de by 2 March 2025.
Please note: All submitted comments, including personal data, will be published in full on the BGR website. If you do not agree with this, please indicate this to us and we will merely state that your comments have been received.
All comments addressing technical and scientific issues related to the test and its monitoring will be carefully considered in the implementation and design of the test.
We value your contributions and look forward to your feedback.
Further information:
- Agreement on Exploration for Polymetallic Nodules between the International Seabed Authority and the Federal Institute for Geosciences and Natural Resources of the Federal Republic of Germany (PDF, 8 MB)
- International Seabed Authority (ISA)
- International Tribunal for the Law of the Sea
- United Nations Convention on the Law of the Sea
- Managing Impacts of Deep-Sea Resources Exploitation [EU research project]
- JPI-Oceans Mining Impact [European research project]
Project contributions:
- Abbaukonzept, Aufbereitung und Metallurgie
- Expeditionen
- MiningImpact logbook 2021
- MiningImpact-Logbuch 2021
- Tagebuch MANGAN 2014
- Umweltbedingungen und Biodiversität
Literature:
2020
- Uhlenkott, K., Vink, A., Kuhn, T., & Martínez Arbizu, P. (2020). Predicting meiofauna abundance to define preservation and impact zones in a deep‐sea mining context using random forest modelling. Journal of Applied Ecology.
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2664.13621 - Hein, J.R., Koschinsky, A. & Kuhn, T (2020). Deep-ocean polymetallic nodules as a resource for critical materials. Nat. Rev. Earth Environ. 1, 158-169. https://doi.org/10.1038/s43017-020-0027-0
https://www.nature.com/articles/s43017-020-0027-0 - Kuhn, T., Uhlenkott, K., Vink, A., Rühlemann, C., Martínez Arbizu, P. (2020). Manganese nodule fields from the Northeast Pacific as benthic habitats. In: P. T. Harris, E. Baker (Eds.), Seafloor geomor-phology as benthic habitat: GeoHab Atlas of seafloor geomorphic fea-tures and benthic habitats (2nd ed., pp. 933–947). Amsterdam, The Netherlands: Elsevier.
https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2664.13621
2019
- Gillard, B., Purkiani, K., Chatzievangelou, D., Vink, A., Iversen, M., Thomsen, L. (2019). Physical and hydrodynamic properties of deep sea mining-generated, abyssal sediment plumes in the Clarion Clipperton Fracture Zone (eastern-central Pacific), Elementa, 7. doi: 10.1525/elementa.343.
https://www.elementascience.org/article/10.1525/elementa.343/ - Janssen, A., Stuckas, H., Vink, A., P. Martinez Arbizu (2019). Biogeography and population structure of predominant macrofaunal taxa (Annelida and Isopoda) in abyssal polymetallic nodule fields: implications for conservation and management. Mar. Biodivers. 49, 2641–2658.
https://link.springer.com/article/10.1007/s12526-019-00997-1 - Rühlemann, C., Kuhn, T., Vink, A. (2019): Tiefseebergbau – Ökologische und sozioökonomische Auswirkungen. In: S. Frech (Hrsg.): Bürger und Staat – Meere und Ozeane. Landeszentrale für politische Bildung Baden-Württemberg
2018
- Heller, C., Kuhn, T., Versteegh, G. J., Wegorzewski, A. V., & Kasten, S. (2018). The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules. Deep Sea Research Part I: Oceanographic Research Papers, 142, 16-33.
https://www.sciencedirect.com/science/article/pii/S0967063718301596?via%3Dihub - Sommerfeld, M., Friedmann, D., Kuhn, T., & Friedrich, B. (2018). “Zero-Waste”: A Sustainable Approach on Pyrometallurgical Processing of Manganese Nodule Slags. Minerals, 8, 544.
https://www.mdpi.com/2075-163X/8/12/544 - Volkmann, S. E., Kuhn, T., & Lehnen, F. (2018). A comprehensive approach for a techno-economic assessment of nodule mining in the deep sea. Mineral Economics, 1-18.
https://link.springer.com/article/10.1007/s13563-018-0143-1 - Wegorzewski, A., Köpcke, M., Kuhn, T., Sitnikova, M., & Wotruba, H. (2018). Thermal Pre-Treatment of Polymetallic Nodules to Create Metal (Ni, Cu, Co)-Rich Individual Particles for Further Processing. Minerals, 8, 523.
https://www.mdpi.com/2075-163X/8/11/523
2017
- Aleynik, D., Inall, M., Dale, A., Vink, A. (2017). Impact of remotely generated eddies on plume dispersion at abyssal mining sites in the Pacific. Scientific Reports 7, 16959. DOI: 10.1038/s41598-017-16912-2.
https://www.nature.com/articles/s41598-017-16912-2 - Gollner, S., Kaiser, S., Menzel, L., Jones, D.O.B., Brown, A., Mestre, N.C., van Oevelen, D., Menot, L., Colaco, A., Canals, M., Cuvelier, D., Durden, J.M., Gebruk, A., Egho, G.A., Haeckel, M., Marcon, Y., Mevenkamp, L., Morato, T., Pham, C.K., Purser, A., Sanchez-Vidal, A., Vanreusel, A., Vink, A., Martinez Arbizu, P. (2017). Resilience of benthic deep-sea fauna to mining activities. Marine Environmental Research 129, 76-101.
https://www.sciencedirect.com/science/article/abs/pii/S0141113617302441 - Jones, D.O.B., Kaiser, S., Sweetman, A.K., Smith, C.R., Menot, L., Vink, A., Trueblood, D., Greinert, J., Billett, D.S.M., Arbizu, P.M., Radziejewska, T., Singh, R., Ingole, B., Stratmann, T., Simon-Lledó, E., Durden, J.M., Clark, M.R. (2017). Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PloS One 12 (2), e0171750, 10.1371/journal.pone.0171750
https://journals.plos.org/plosone/article%3Fid%3D10.1371/journal.pone.0171750 - Knobloch, A., Kuhn, T., Rühlemann, C., Hertweg, T., Zeissler, K.-O., Noack, S. (2017). Predictive mapping of the nodule abundance and mineral resource estimation in the Clarion-Clipperton Zone using artificial neural networks and classical geostatistical methods. In: R. Sharma (Ed.): Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Springer International, Cham, pp. 189 – 212.
https://link.springer.com/chapter/10.1007/978-3-319-52557-0_6 - Kuhn, T., Wegorzewski, A., Rühlemann, C., Vink., A., (2017). Composition, Formation, and Occurrence of Polymetallic Nodules. In: R. Sharma (Ed.): Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Springer International, Cham, pp. 23 – 64.
https://link.springer.com/chapter/10.1007/978-3-319-52557-0_2 - Kuhn T., Versteegh G.J.M., Villinger H., Dohrmann I., Heller C., Koschinsky A., Kaul N., Ritter S., Wegorzewski A.V. and Kasten S. (2017). Widespread seawater circulation in 18–22 Ma oceanic crust: Impact on heat flow and sediment geochemistry. Geology, 45, 799-802.
https://pubs.geoscienceworld.org/gsa/geology/article/45/9/799/208001/Widespread-seawater-circulation-in-18-22-Ma
2016 - 2009
- Mewes, K., J.M. Mogollón, A. Picard, C. Rühlemann, A. Eisenhauer, T. Kuhn, W. Ziebis, S. Kasten (2016). Diffusive transfer of oxygen from seamount basaltic crust into overlying sediments: An example from the Clarion-Clipperton Fracture Zone. Earth and Planetary Science Letters, 433: 215-225.
- Rühlemann, C., S. Knodt (2015): Manganese nodule exploration & exploitation from the deep ocean. The Journal of Ocean Technology, 10: 1-9.
- Schoening, T., Kuhn, T., Bergmann, M., Nattkemper, T. W. (2015). DELPHI−fast and adaptive computational laser point detection and visual footprint quantification for arbitrary underwater image collections. Frontiers in Marine Science, 2: 1-6.
- Inall, M., D. Aleynik, A. Dale, A. Vink (2015). Central American gap winds and abyssal CCZ plumes. MIDAS Newsletter 4, Spring 2015, 6-7.
- Wegorzewski, A. V., Kuhn, T., Dohrmann, R., Wirth, R., Grangeon, S. (2015). Mineralogical characterization of individual growth structures of Mn-nodules with different Ni+ Cu content from the central Pacific Ocean. American Mineralogist, 100 (11-12), 2497-2508.
- Wiedicke-Hombach, M., T. Kuhn, C. Rühlemann, A. Vink, U. Schwarz-Schampera (2015). Deep-sea mining - a future source of raw materials? Mining Report, 151, No. 4, 318 - 329.
- Blöthe, M., Wegorzewski, A., Müller, C., Simon, F., Kuhn, T., Schippers, A. (2015). Manganese-cycling microbial communities inside deep-sea manganese nodules. Environmental Science & Technology, 49: 7692-7700.
- Bau, M., K. Schmidt, A. Koschinsky, J. Hein, T. Kuhn, A. Usui (2014). Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chemical Geology, 381, 1-9.
- Wegorzewski, A.V., T. Kuhn (2014). The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean. Marine Geology, 357, 123-138.
- Barckhausen, U., M. Bagge, D.S. Wilson (2013). Seafloor spreading anomalies and crustal ages of the Clarion-Clipperton Zone. Marine Geophysical Research, 34, 79-88.
- Kriete, C. (2011). An Evaluation of the Inter-Method Discrepancies in Ferromanganese Nodule Proficiency Test GeoPT 23A. Geostandards and Geoanalytical Research, 35: 319-340.
- Mewes, K., J.M. Mogollón, A. Picard, C. Rühlemann, T. Kuhn, K. Nöthen, S. Kasten (2014). Impact of depositional and biogeochemical processes on small scale variations in nodule abundance in the Clarion‐Clipperton Fracture Zone, Deep Sea Research Part I: Oceanographic Research Papers, 91: 125-141.
- Rühlemann, C. T. Kuhn, A. Vink, M. Wiedicke (2013). Methods of manganese nodule exploration in the German license area. In: Morgan, C.L. (eds.). Recent developments in Atlantic seabed minerals exploration and other topics of timely interest. The Underwater Mining Institute 2013, Rio de Janeiro, 7 pp.
- Kuhn, T., C. Rühlemann, M. Wiedicke-Hombach (2012). Developing a Strategy for the Exploration of Vast Seafloor Areas for Prospective Manganese Nodule Fields. In Zhou, H. and Morgan, C.L. (eds.) Marine Minerals: Finding the Right Balance of Sustainable Development and Environmental Protection. The Underwater Mining Institute 2012, Shanghai, 9 pp.
- Wiedicke, M., T. Kuhn, C. Rühlemann, U. Schwarz-Schampera, A. Vink (2012). Marine mineralische Rohstoffe der Tiefsee - Chance und Herausforderung. Commodity Top News: Fakten, Analysen, wirtschaftliche Hintergrundinformationen, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, vol. 40, 10 pp.
- Kuhn, T. et al. (2010): New Insights of Mn Nodule Exploration from the German License Area in the Pacific Manganese Nodule Belt. Toward the Sustainable Development of Marine Minerals: Geological, Technological, and Economic Aspects; Underwater Mining Institute 2010, Gelendzhik, Russia.
- Rühlemann, C., Barckhausen, U., Ladage, S., Reinhardt, L., Wiedicke, M. (2009): Exploration for polymetallic nodules in the German license area. Proc. 8th ISOPE Ocean Mining Symp.: 8-14.